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In the work presented here, a method to predict the e!ectiveness of application of damped
dynamic vibration absorbers to suppress stationary random vibration of rectangular simply
supported plates is given. Numerical examples of two di!erent spatial distributions of the
random-in-time forcing function are explored and optimal absorber parameters are
presented.
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1. INTRODUCTION

Plate and plate-like structures occur in many common applications. A few of these are
bridge and building structures, naval structures and pressure vessels. One application that
initially motivated this work was the vibration of edge-supported printed wiring boards for
electronic systems. These above-cited structures are often excited by random acoustic "elds
or random accelerations.

There is a wealth of literature dealing with the free and deterministically forced vibration
of systems that are composed of combinations of simpler assemblies such as beams, plates,
sprung masses, dashpots, etc. [1}10]. There is a very limited body of literature dealing with
the random vibration of such composite systems. The e!ect of elastic constraints on the
random vibration of damped linear structures was considered by Howell [11]. More
recently, the random vibration of combined linear systems has been considered by Bergman
and Nicholson [12] in which the normal mode method and the Green functions are
employed to express the cross-correlation functions and cross-spectral density functions of
the beam response. Still more recently, Kareem and Sun [13] have considered the problem
of random vibration of a structure carrying a tank of sloshing #uid which is modelled as
a series of parallel attached linear oscillators. The theory given adds an additional number
of degrees-of-freedom to handle the additional attached oscillators. The solution to the
resulting problem is then given as the usual lumped parameter eigen solution and does not
build on the knowledge of the problem prior to the addition of the tank of #uid. The
random vibration of a damped tapered beam carrying masses is treated in the work of
Yadav et al. [14] wherein the "rst and second order statistics of the responses are calculated
for a cantilever beam with a base excitation. The random vibration of damped, modi"ed beam
systems has recently been published and it is shown that random vibration of a cantilever
beam can be optimally suppressed by employing a dynamic vibration absorber [15].

In this work the suppression of random vibrations of a rectangular plate by a dynamic
vibration absorber will be considered. Absorber location, mass, sti!ness and damping will
be the variables investigated. At the outset, a number of simplifying assumptions will be
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made. The driven system will be assumed to be a thin, uniform, rectangular, elastic plate
with simple support along the edges. The forcing function will be the product of
a deterministic spatial distribution and a stationary random function in time. This
assumption obviates many convective turbulent pressure "elds such as those present in
boundary layer #ows.

2. THEORY

Consider a simply supported, thin rectangular plate on the rectangular domain 0(x(a
and 0(y(b which carries a dynamic vibration absorber at point (x

0
, y

0
) as illustrated in

Figure 1. The plate is under the action of two forcing functions, the "rst being the externally
applied spatially distributed force w (t)g (x, y) and the second being p (t), the point force
transmitted to the plate at a point by the attached dynamic absorber. The appropriate
equation of motion for the plate is
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where the #exural rigidity of the plate D is de"ned as
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and where E is the modulus of elasticity, l is the Poisson ratio, h is the plate thickness and
o is the material density.

Here it has been assumed that the externally applied forcing function is w(t)g (x, y), where
g(x, y) is a deterministic function of x and y and w (t) is a stationary random function of time.
The boundary conditions on equation (1) are that the displacement and bending moment
are zero at the edges of the plate. The solution to this problem can be expanded in
Figure 1. Simply supported plate carrying a dynamic absorber.
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a two-dimensional Fourier series in the plate co-ordinates or
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Similarly, the spatial part of the forcing function can be expanded as
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and the Dirac delta functions can also be expanded as
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where the Fourier coe$cients a
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Here the a
ij

depend only on the spatial distribution of the random forcing function g (x, y).
If the expansions of relations (3), (4) and (5) are substituted into relation (1) and the Laplace
transform is taken with respect to time, the result is a set of algebraic equations
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If this is solved for the generalized co-ordinates Q
ij
(s) the result is
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then if both=(s) and P(s) were known then the s-domain motion of any point on the plate
could be given as
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where ;(x, y, s) is the Laplace transform of u (x, y, t) with respect to time. For a damped
dynamic vibration absorber the relation between the motion of the point of attachment and
the force transmitted to the plate at the point of attachment is
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The forcing function P (s) in relation (10) can be eliminated by employing relation (11) to
give
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This gives the plate de#ection at an arbitrary point (x, y) in terms of the forcing function
=(s) and the motion at the point of attachment (x

0
, y

0
). This relation must hold at the

point of attachment (x
0
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0
) which gives
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This can be solved for a transfer function between = (s) and ;(x
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where a
ij

and b
ij

are given by relations (6) and (7). The ijth radian natural frequency will be
denoted as u
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which is
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Expression (14) may be solved for;(x
0
, y

0
, s) and then substituted into relation (12) to give

the transform of the motion at any point which is; (x, y, s). The absorber natural frequency
is de"ned as
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Now it is appropriate to de"ne some non-dimensional parameters starting with the natural
frequency ratio
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The mass ratio k is de"ned as the ratio of the absorber mass to that of the plate or
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m
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The tuning ratio ¹ is the ratio of the absorber frequency to the "rst natural frequency of the
plate or
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and the absorber damping ratio is de"ned as
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, (20)

The plate aspect ratio R is de"ned as
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a
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A new normalized Laplace transform p variable can now be de"ned as
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Using all these non-dimensional variables relation (14) may be written as
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Since the point of interest here is the stationary random motion of the plate, it is
appropriate to calculate the frequency response function by letting s"ju or in this case
where the variable s has been normalized, it is appropriate to let p"jf where the
normalized frequency is de"ned as f"u/u

11
to give
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If this frequency response is termed M ( j f ) and the forcing function w (t) has power spectral
density S

w
( f ) the spectral density of the point of attachment is then
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The mean square motion at point (x
0
, y

0
) can then be given by integrating the power

spectrum of relation (25) to give
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3. EXAMPLE 1

Consider the case where g (x, y)"1 or that the forcing function is uniform in space and
stationary and random in time. Assume that the plate has an aspect ratio of unity. In this
case the a

ij
Fourier coe$cient are given by relation (6) to be
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and zero otherwise. With this, relation (24) becomes
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Assume that the absorber has been attached at the center of the plate so that
x
0
/a"y

0
/b"1

2
. For a tuning ratio ¹"1, an aspect ratio of unity, a mass ratio k"0)2 and

for a w (t) with a constant power spectral density S
w

the motion power spectral density S
u
( f )

has been evaluated and is illustrated in Figure 2 in non-dimensional form for several values
Figure 2. Dimensionless motion power spectral density for g(x, y)"1, R"¹"1, k"0)2 and x
0
"y

0
"a/2

for several values of damping ratio.



Figure 3. Dimensionless plate midpoint mean square motion for various mass ratios as a function of absorber
damping ratio for the attachment of the absorber to the plate midpoint for R"¹"1.

Figure 4. Optimal absorber damping ratio as a function of mass ratio for g(x, y)"1, R"¹"1, k"0)2 and
x
0
"y

0
"a/2.
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of the absorber damping ratio f. If the integral of equation (26) is evaluated for various
damping ratios and mass ratios the mean square motions of Figure 3 result. It is clear that
for each particular mass ratio there is a value of damping ratio f that yields minimum mean
square motion. The values of damping ratio which minimize the mean square motion for



Figure 5. Mean-square midpoint motion as a function of mass ratio for optimal values of absorber damping
ratio for g (x, y)"1, R"¹"1 and x

0
"y

0
"a/2.
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the various mass ratios in Figure 3 have been evaluated numerically and are shown in
Figure 4 as a function of the mass ratio. The irregularity of the curve results from the
inaccuracy of numerically "nding the very shallow minima of the curves of Figure 3. The
minimum mean square motion for a tuning ratio of ¹"1 as a function of mass ratio is
illustrated in Figure 5 and it is apparent that for a given tuning ratio there is a best mass
ratio which in a variety of cases is approximately between 25% and 30% of the plate mass.
Figure 4 then reveals that the best absorber damping ratio for this mass ratio is about
f"0)45.

It should now be noted that this example is naive from two points of view. The "rst is that
excitation is never exactly symmetric, thus the modes with one or both of the indices, being
even, will participate in the motion. The second is that the installation location of the
absorber, (x

0
, y

0
), can never be established exactly at the center of the plate and this

non-exact placement will cause coupling of energy into the modes with one or both of the
indices being even. Although these modes are not expressly excited by the random forcing
function, they can be excited by the absorber when its installation is not on a nodal line
associated with a particular mode. These phenomena, called spillover in the distributed
parameter automatic control literature [16], re#ect the #ow of energy from the odd modes
driven by the external forcing function into the even modes by virtue of the intrinsic
feedback loop created by the dynamic absorber.

In light of these results it would be interesting to examine the case, where the absorber is
attached at a point not on nodal lines of the "rst 81 modes such as x

0
"y

0
"0)55a for an

aspect ratio of unity. The motion power spectral density for the point of absorber
attachment is illustrated in Figure 6. From the resonant peaks present, for light damping it
can be noted that the modes for even values of the modal indices are now participating due
to the change of location of the absorber. This is due to the #ow of energy from the forcing
function through the odd modes which excites the absorber which due to its location excites



Figure 6. Dimensionless motion power spectral density for g(x, y)"1, R"¹"1, k"0)2 and x
0
"y

0
"0)55a

for several values of damping ratio.
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the even modes. For this new attachment point and "xed tuning and mass ratios, there are
optimal values of the absorber damping parameter similar to those calculated for
Figures 3}5.

4. EXAMPLE 2

Consider now the case where the spatial distribution of the forcing function is such that
all the modes of the plate are excited by w (t)g(x, y). As a simple example, let the spatial
distribution be

g (x, y)"xy. (29)

The Fourier coe$cients for this distribution are given by relation (6) to be
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With these Fourier coe$cients the frequency response function between the forcing
function and the response at the point of attachment is
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If the aspect ratio R"1, the mass ratio k"0)2 and the tuning ratio ¹"1, all the modes
are excited by the forcing function. A good choice for the location of the dynamic absorber



Figure 7. Dimensionless motion power spectral density for g(x, y)"xy, R"¹"1, k"0)2 and
x
0
"y

0
"0)77a for several values of damping ratio at the point of attachment.

Figure 8. Dimensionless mean square motion for various mass ratios as a function of absorber damping ratio
for the attachment of the absorber to the point x

0
"y

0
"0)77a and R"¹"1.
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is somewhere near where maximum motion will take place. Given that the spatial force
distribution is g (x, y)"xy and that the plate edges are restrained, a good location would be
x
0
"y

0
"0)77a such that it is driven by all the modes and in turn can dissipate the energy



Figure 9. Optimal absorber damping ratio as a function of mass ratio for g(x, y)"xy, R"¹"1, k"0)2 and
x
0
"y

0
"0)77a.
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from all the modes. For this case the dimensionless power spectral density is illustrated in
Figure 7 and it is clear that the modes are all participating in the motion. As in the previous
example, once the absorber location is chosen the parameters may be chosen optimally to
minimize the motion of the point of attachment. The mean-square motion of the point of
attachment for a number of mass ratios as a function of the damping ratio is illustrated in
Figure 8 and the optimal damping ratio as a function of mass ratio is illustrated in Figure 9.
The linear function is somewhat surprising but is the result of a numerical minimum "nding
procedure.

5. CONCLUSION

In the work presented here dynamic vibration absorbers have been shown to suppress
randomly forced vibrations signi"cantly and can do so in a way which minimizes the
mean-square motion at the point of attachment of the absorber. It is also possible to choose
the absorber parameters so as to minimize the mean-square motion at some other point on
the plate but the computations involved will be lengthy but can be accomplished.

Several interesting problems for future study are suggested by this investigation and by
the reviewers of this paper. The "rst is that of minimization of the average mean-square
motion over the whole domain of the plate, a problem which should be "rst explored in the
one-dimensional context of a string or a beam. Another interesting problem for future work
would be the optimal location(s) of one or more dynamic vibration absorbers on the
domain of a distributed parameter system. This also would initially best be carried out on
systems with only one spatial variable such as a string or beam.
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